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Abstract—Flow analysis, such as control-flow, data-flow, and
exception-flow analysis, usually depends on relational operations
on flow sets. Unfortunately, set related operations, such as
inclusion and equality, are usually very expensive. They can
easily take more than 97% of the total analyzing time, even in a
very simple analysis. We attack this performance bottleneck by
proposing Gödel hashes to enable fast and precise flow analysis.
Gödel hashes is an ultra compact, partial-order-preserving, fast
and perfect hashing mechanism, inspired by the proofs of
Gödel’s incompleteness theorems. Compared with array-, tree-,
traditional hash-, and bit vector-backed set implementations, we
find Gödel hashes to be tens or even hundreds of times faster for
performance in the critical operations of inclusion and equality.
We apply Gödel hashes in real-world analysis for object-oriented
programs. The instrumented analysis is tens of times faster than
the one with original data structures on DaCapo benchmarks.

I. INTRODUCTION

Flow analysis, such as control-flow analysis, data-flow anal-
ysis and exception-flow analysis, usually depends on relational
operations on flow sets (e.g. higher-order flow sets, points-
to sets, etc.). Unfortunately, set related relational operations,
such as inclusion and equality, are usually very expensive. In
flow analysis, they can easily become the major performance
bottleneck.

To expose this problem, we take a typical control flow
analysis, the path-sensitive 0CFA as an example. Path-sensitive
0CFA is deeply exponential, and its theoretical utility lies in
generating transition graphs that can be model-checked for
safety and liveness properties [17]. The path-sensitive version
of 0CFA [24], [23], [16] could perform on the order of
O(n2((2n)n)2) subsumption tests: programs as small as 100
lines can easily visit well over a hundred thousand states,
requiring over a billion subsumption tests between abstract
heaps.

To further show the performance bottleneck caused by set
operations in a real analysis, we have instrumented a publicly
available program analyzer that is developed for DARPA’s Au-
tomated Program Analysis for Cybersecurity (APAC) program.
The details of this analyzer can be found in [15]. It is the same
analyzer we have used in the later evaluation section VIII.
We did a performance profiling on it to measure the total
time of all set related operations when analyzing a benchmark
program, Antlr, in the DaCapo [1] benchmark. The profiling
result shows that more than 97% of the total analyzing time
has been spent on the set related operations.

The above theoretical analysis and benchmark experiment
both reveal that the set related relational operations used by

flow analysis is a major bottleneck. In this paper, we attack
this bottleneck by proposing the Gödel hashing mechanism,
which can be used to encode efficient data structures for flow
analysis, such as sets, maps and partial orders. The idea of
Gödel hashes is inspired by Gödel’s incompleteness proofs [9].
Gödel’s incompleteness proofs used clever strategies for en-
coding complex mathematical structures as individual natural
numbers. With occasional help from Cantor [4], we focus on
one of the strategies Gödel used for encoding propositions,
and we extend it to encode sets, maps and partial orders. We
term these encodings Gödel hashes because they are compact
and because inverting the encoding is impossible.1 Compared
to traditional hashing strategies, Gödel hashes possess six
attractive properties:

1) Gödel hashes are perfect hashes. For an ordinary hash
function, inequality of the hashes implies inequality of the
original objects, but equality of hashes does not imply
the equality of the original objects. For a perfect hash
function, the hashes of two objects are equal if only if
the objects are equal.

2) Gödel hashes are dynamic. Unlike other perfect hashing
schemes, it is not necessary to know all of the items that
may be hashed in advance in order to compute a Gödel
hash. Moreover, if the probability distribution of objects
to be hashed is known in advance, then the average Gödel
hash will be minimal.

3) Gödel hashes are structurally incremental. Given a
value and its hash, it is efficient to incrementally up-
date the hash without recomputation when the value
is extended. It is also straightforward to compute the
Gödel hash of complex value from the Gödel hash of
its components.

4) Gödel hashes are compact. Because Gödel hashes are
dynamic and perfect, they are necessarily unbounded in
size. Even so, it is straightforward to reason about their
size in advance in both worst and average cases, and even
their worst case is remarkably compact under pessimistic
assumptions. For example, in the worse case, the Gödel
hash of a set achieves a density of more than one element
per 64-bit word until 258 elements are in the universe. The
average case is slightly more compact.

5) Gödel hashes are efficient. Operations on Gödel hashes
are efficient, and they are easy to implement in most
modern programming languages, thanks to their built-

1This statement is false. It is actually computationally intractable to invert.



in support for arbitrary-precision integer arithmetic. In
particular, multiple precision arithmetic can be efficiently
implemented by modern CPUs’ SIMD instructions.

6) Gödel hashes are partial-order-preserving. Gödel
hashes are order-preserving (monotonic) for a variety of
partial orderings. For instance, if:

H : X→ H

computes the Gödel hash of an element in the set X, and
the relation (⊆) orders X while the relation (v) orders
H, then:

x ⊆ y iff H(x) v H(y).

Critically, the relation v has a fast, efficient arithmetic
implementation. We show that all factorable partial orders
(defined in Section V) have a Gödel hashing scheme,
and we show that factorability is preserved across many
set-construction operations. Thus, even complex partially-
ordered data structures have an order-preserving Gödel
hash. Existing hashing techniques preserve total orders,
so this opens up new possibilities for the use of hashes
in flow analysis, as shown in Section VIII on pushdown
control flow for object-oriented programs.
a) Key idea: Even though the precise algorithm for

constructing a Gödel hash differs from one kind of structure
to another, all Gödel hashing techniques that we discuss in
detail exploit the same principle—The Fundamental Theorem
of Arithmetic:

Every natural number has a unique decomposition
as the product of prime factors.

We find links between insertion and multiplication, between
removal and division, and between subsumption and divisibil-
ity. We generalize these links to cover additional structures,
such as partial orders.

Our message is that Gödel hashes are efficient and useful
for applications in which hashes need to compactly preserve
structure. As our motivating application, flow analysis is a
representative use-case of Gödel hashes, which heavily relies
on relational operations on partial order preserving flow sets.

A. Overview

We begin with a review of preliminary mathematics and
notations. We first explore Gödel hashes on sets by defining a
perfect hashing function that exploits the fundamental theorem
of arithmetic; it maps set-theoretic operations on values (e.g.,
union, intersection, subset-inclusion) into arithmetic opera-
tions on hashed values (e.g., lcm, gcd, divisibility).

We conduct a formal analysis of the worst- and average-
case space usage of the set hashes, and then provide a space-
optimality result when the distribution of elements amongst
sets is known a priori. Following the analysis of space usage,
we analyze the speed of operations on Gödel hashes, which
reveals that, asymptotically, some operations on Gödel hashes
are worse than the equivalent operations on the original values.

However, by “unhiding” the hidden constant factors—the
speed-up from word-sized arithmetic operations for the hashes

and the cost of cache misses for the original values—we find
the potential for operations on Gödel hashes to be significantly
faster (a point later validated by our empirical trials).

With Gödel sets defined, we then extend Gödel hashes to
maps, relations and graphs, which are also important data
structures in classic program flow analysis. After that, we
show that many recursively constructed, partially ordered data
structures have order-preserving (monotonic) Gödel hashes.
We do so by finding a condition on partial orders, factorability,
which implies the existence of an order-preserving Gödel hash,
and show that common set constructors preserve factorability.

We then briefly discuss computing the prime numbers
necessary for Gödel hashing to work.

To evaluate compactness in space, we compare Gödel
hashes on sets against array-backed sets, tree-backed sets,
traditional hash-backed and bitmap-backed sets. In sparse set
cases, we find order-of-magnitude reductions in size. We also
find order-of-magnitude advantages in the critical operations
for speed: equality, inclusion and competitive performance in
other operations.

To wrap up, we discuss real world application of Gödel
hashes in a program analyzer. We instrumented Gödel hashes
in a real-world analysis for object-oriented programs. For the
DaCapo benchmarks, analysis with Gödel hashes runs tens of
times faster than the one based on original data structures.

II. PRELIMINARIES: BACKGROUND AND NOTATIONS

The set N = {0, 1, 2 . . .} is the set of natural numbers.
The set Z = {. . . ,−1, 0, 1, . . .} is the set of integers. The set
P = {2, 3, . . .} is the set of prime numbers. The number pi is
the ith smallest prime number, where p0 = 2.

To enhance readability and notational symmetry, we use the
operations greatest common divisor (gcd) and least common
multiple (lcm) in infix form. There are many equivalent
definitions of these operations, but this work exploits a par-
ticular (and uncommon) interpretation of these operations:
as functions which minimize or maximize the exponents of
two natural numbers in a factor-wise fashion; the greatest
common divisor of two natural numbers n = pm0

0 · · · pmn
n and

n′ = p
m′

0
0 · · · p

m′
n

n is:

n gcd n′ = p
min(m0,m

′
0)

0 · · · pmin(mn,m
′
n)

n ,

and their least common multiple is:

n lcm n′ = p
max(m0,m

′
0)

0 · · · pmax(mn,m
′
n)

n .

We also use the divisibility relation:

a | b iff b mod a = 0.

Our proofs often employ characteristic functions. The charac-
teristic function of a set A is the function χA : A→ {0, 1}:

χA(x) =

{
1 x ∈ A
0 x 6∈ A.

We use the bar brackets to denote set cardinality: |A| is the
cardinality of the set A.



The function ln denotes the natural logarithm (loge) and the
function lg denotes the binary logarithm (log2).

We make use of Cantor’s bijection, C∗ : Z∗ → N.
There are many such bijections (but Cantor first proved their
existence [4]). Any such bijection will work. For example,
for the simple case of assigning pairs of naturals to a unique
natural, the function C+

2 : N2 → N works:

C+
2 (x, y) =

x∑
i=0

i+

y+2∑
j=x+2

j

A. Gödel hashing notations
For each hashable structure X that we study, we will define

a Gödel-hashing function GX : X → N, so that GX(x) is the
Gödel encoding of the value x. To unclutter notation, we will
often shorthand GX(x) as ||x||X or just ||x|| when it is clear
what X is.

III. SETS

Sets—unordered collections of elements—abound in func-
tional (and non-functional) programming. For set-intensive
applications, performance hinges on two factors (1) the space-
efficiency of the underlying data structure and (2) the time-
efficiency of operations on such structures: membership test-
ing, inclusion testing, intersection, insertion, union, deletion
and difference. A Gödel strategy for encoding sets delivers
pragmatic efficiency in both dimensions.

We devote more details to the study of Gödel hashes of
sets, because many of the results on sets (e.g., correctness,
efficiency, optimality) generalize to other data structures.

To construct the Gödel encoding of a set, first assume that
every potential element has been assigned a unique prime
number; then compute the product of the primes assigned to
each element; the result is the Gödel hash of the set. It is not
necessary to pre-construct the assignment from elements to
primes: new elements may be assigned fresh primes as they
are encountered for the first time.

b) Example: If the potential elements of a set are A,
B, C and D, then we can assign these elements the primes
2, 3, 5 and 7 respectively. Thus, the Gödel hash of the set
S = {A,C} is the natural number 2× 5 = 10. 2

On the Gödel hash of a set, familiar number-theoretic opera-
tions become set-theoretic operations: modulo tests both mem-
bership and subset-inclusion; union becomes least common
multiple; and intersection becomes greatest-common divisor.

A. Formal definition of Gödel encoding for sets
A universe of discourse, denoted U, which may be either

finite or infinite, is a collection of all the elements that
may appear in a set. A prime map for a universe U is an
injective function PU : U → P which maps every element
in the universe U to a unique prime number. In practice,
the implementation may assign primes dynamically while
memoizing them; or if the elements of the universe themselves
have a perfect hash map, H : U→ N,2 then a purely functional

2Created, perhaps, by Gödel hashes in the internal structure of elements.

prime map may be used:

Ppure(u) = pH(u),

which lends itself to a recursive strategy for constructing prime
maps.

Definition III.1. The function GP(U) : P (U) → N computes
the Gödel hash of a set:

GP(U) {u1, . . . , un} = || {u1, . . . , un} || = P (u1)×· · ·×P (un).

Equivalently, the Gödel hash of a set may also be defined
through its characteristic function:

GP(U)(A) =
∏
u∈U

P (u)χA(u).

(When only one universe is under consideration, the subscripts
may be left off.)

B. Set-theoretic operations and relations

We can construct the standard set-theoretic operations and
relations out of arithmetic.

Lemma III.1. Union reduces to least common multiple:

||A ∪B|| = ||A|| lcm ||B||.

Proof. Let A,B ⊆ U.

||A ∪B|| =
∏
u∈U

P (u)χA∪B(u)

=
∏
u∈U

P (u)max(χA(u),χB(u))

= lcm

(∏
u∈U

P (u)χA(u),
∏
u∈U

P (u)χB(u)

)
= ||A|| lcm ||B||.

Lemma III.2. Intersection reduces to greatest common divi-
sor:

||A ∩B|| = ||A|| gcd ||B||.

Proof. By argument analogous to the previous proof.

Lemma III.3. Set difference reduces to division:

||A−B|| = ||A||
||A|| gcd ||B||.

Proof. By extension of the previous result.

Lemma III.4. Membership reduces to divisibility:

u ∈ A iff P (u) | G(A)



Proof.

u ∈ A iff 1 = χA(u)

iff P (u) = P (u)χA(u)

iff P (u) | P (u)χA(u)

iff P (u) |
∏
u∈U

P (u)χA(u)

iff P (u) | G(A).

Lemma III.5. Inclusion reduces to divisibility:

A ⊆ B iff G(A) | G(B).

Proof. By an argument similar to the proof for membership.

Lemma III.6. Insertion reduces to divisibility and multipli-
cation:

||A ∪ {u} || =

{
||A|| P (u) | ||A||
||A|| × P (u) otherwise.

Proof. By cases in u ∈ A, u 6∈ A.

Lemma III.7. Deletion reduces to divisibility and division:

||A− {u} || =

{
||A||/P (u) P (u) | ||A||
||A|| otherwise.

Proof. By cases in u ∈ A, u 6∈ A.

C. Space-efficiency of Gödel hashes on sets

We can derive upper bounds on the size of a Gödel hash for
a set. Let U be the cardinality of the universe, U = |U|. Using
the prime number theorem, we can approximate the value of
the prime pU :

pU ≈ U ln(U)

From this, we can approximate the number of bits required to
represent pU :

EU = size(pU ) ≤ dlg(U ln(U))e

When an n-bit number and an m-bit number are multiplied,
the result is an (at most) (n+m)-bit number. From this, we
can bound the bit size of a hash with k elements:

size(|| {u1, . . . , uk} ||) ≤ k × dlg(U ln(U))e.

One immediate observation, is that on 32-bit hardware, until
the universe of discourse exceeds a cardinality of 193,635,250
(roughly 227), each word will hold more than one element. On
64-bit hardware, the equivalent threshold for the universe of
discourse is a cardinality of 415,828,534,307,634,000 (roughly
258).

We can also predict the minimum number of elements which
will fit in a single word of W bits as a function of the size of
the universe:

kmin(U) =
W

dlg(U ln(U))e
.

c) Example: For example, with a universe of 210

elements, a 64-bit machine would be able to roughly fit
5 elements in each word. Translated to a more concrete
example, if 0CFA [23] were to compute the flow sets
(where each flow set contains the lambda terms that might
flow to an expression) for a program with a thousand
functions, most flow sets (which tend to be very sparse)
would fit in single word—a single register. Using the bitmap
formulation, each flow set would consume 16 words of
contiguous memory; using the traditional bucket-based hash
set, each flow set would consume about 10 words; and
a balanced-tree sorted set implementation would consume
roughly 15 words of (non-contiguous) memory per flow set. 2

The average case is slightly better. For the average case,
we assume that the elements of a set are uniformly distributed
throughout the universe. In this case, the average size (in bits)
of a set with k elements will be:

k

(U − 1)

U∑
i=2

dlg(i ln(i))e.

d) Example: For instance, on average, on 64-bit
hardware, each word will hold a little over 5 elements on
average assuming a universe with 210 elements. Or, in a
universe with 216 elements, each word will now hold about
3 elements on average. 2

1) Optimizing the prime map for space usage: If we know
a priori the probability distribution of elements in the universe,
then we can assign primes so as to minimize the number of
bits per set. If the probability of an element u appearing in
a set is f(u), then we can construct the vector ~u? ∈ U∗ in
which elements are sorted according to decreasing frequency:

f(u?i ) ≥ f(u?i+1).

The optimal prime map is P ? : U→ P:

P ?(u?i ) = pi.

The expected size (in bits) of a random set is:∑
u∈U

f(u)dlg(P ?(u))e,

which leads to a space-optimality result:

Theorem III.1 (Space optimality). The prime map P ? mini-
mizes the expected bit-size of a random set.

Proof. Straightforward. (By contradiction.)

a) Example: If the universe has infinite size, but its
elements are distributed according to a geometric distribution
with parameter r = 1/2, then the average set size will be
roughly six bits. (Intuition: Half of all the elements will be
2, which adds only one bit to a set; a quarter of all elements
will be 3, which adds only two bits; an eighth of all elements
will be 5, etc.) 2



D. Time efficiency of operations on Gödel hashes for sets

As it turns out, some operations on Gödel hashes have
slightly worse asymptotic complexity than other data structures
for sets. We’ll need to perform a more detailed accounting
of their cost with respect to modern hardware, chiefly with
respect to the CPU word size, to unearth their pragmatics. To
make the constant factors stand out, we’ll assume 64-bit hard-
ware. We’ll also assume that the underlying implementation
of arbitrary-precision natural number is an array of unsigned
integers (64-bit words).

We discuss the cost of operations on two sets A and B. We
assume the universe contains no more than 258 elements so
that a single element hash can fit into a machine word. Such a
universe size is sufficient in practice. Let m be the sum of the
cardinality of these sets: m = |A|+ |B|. We will refer to the
maximum number of bits in the Gödel hashes of these sets:
n = mEU.

• Intersection needs to compute greatest common divisor.
The Euclidian algorithm requires up to n/64 modulo
operations on two multiple precision naturals (the Gödel
hashes of two sets respectively), each of which has O(n2)
time complexity. Thus, the complexity of intersection is
cubic: O(n3). However, the modulo operation is per-
formed in chunks of the word-size, which means the
O(n2) complexity has a hidden 1/642 constant speedup
factor. Considering the other 1/64 constant in the number
of times of the modulo operations, the cubic intersection
complexity actually has a 1/643 constant speedup factor!
On a pipelined 64-bit CPU, the back-of-the-envelope cost
of the computation is up to

⌈
n3

643

⌉
=
⌈

n3

262144

⌉
clock

cycles!
• The cost for union is the same as intersection.
• The cost for set difference is the same as intersection, plus

a division operation with two multiple precision numbers.
• The cost for element insertion is a modulo operation and

a multiplication operation, both of which operate on a
multiple precision number (the Gödel hash of a set) with
a word-size (the Gödel hash of an element) divisor or
multiplicand, so the total time complexity is O(n), with
a 1/64 constant speedup factor.

• The cost for element deletion is: a modulo and a division,
both of which operate on a multiple precision number (the
Gödel hash of a set) with a word-size (the Gödel hash of
an element) divisor. Same as insertion, it is O(n) time
complexity with a 1/64 constant speedup factor.

• The complexity of membership-testing is quite efficient
too: one modulo operation on a multiple precision number
(the Gödel hash of a set) with a word-size (the Gödel
hash of an element) divisor, which costs O(n) time with
a 1/64 constant speedup factor.

• The cost of subset inclusion testing is a modulo operation
with two multiple precision numbers (the Gödel hashes of
two sets respectively), which is O(n2) time complexity,
with a 1/4096 constant speedup factor.

• The complexity of set enumeration is equivalent to integer

factorization, which is believed to be intractable3.

In practice, multiple precision arithmetic can be further
accelerated via SIMD instructions such as SSE and AVX [12].
These instructions can operate on 256 or even 512 bits data
with a single instruction. Hence, all the operations above can
benefit from a much larger constant factor. What’s more, com-
pared with other common set implementations such as tree-
based or bucket-based hash sets, the natural implementation of
Gödel hashes as a small array of unsigned integers, which can
minimize cache misses, is better-suited to modern hardware for
cache efficiency. The empirical evaluation in Section VII-B on
the GNU GMP based Gödel hashes validates both of these.

IV. MAPS, RELATIONS AND GRAPHS

The strategy for Gödel-hashing maps, relations and graphs
are derivatives of the strategy for Gödel-hashing sets.

A. Hashing maps

Finite maps can be encoded as sets of pairs; thus:

Definition IV.1. The Gödel hash of a map f : X → Y with
respect to prime map PX×Y : X × Y → P is G(f), where:

G(f) =
∏

x∈dom(f)

PX×Y (x, f(x)).

B. Hashing relations

Relations can also be encoded as sets of pairs; thus:

Definition IV.2. The Gödel hash of a relation R ⊆ X × Y
with respect to prime map PX×Y : X × Y → P is G(R),
where:

G(R) =
∏
x R y

PX×Y (x, y).

C. Hashing graphs

A directed graph (V,E) is just a set of vertexes and a set
of edges.

Definition IV.3. Given two Gödel set-hashing functions:

GP(V ) : P (V )→ N , and GP(E) : P (E)→ N,

the Gödel hash of a graph (V,E) is G(V,E):

G(V,E) = (GP(V )(V ), GP(E)(E)).

If one needs a natural number instead of a pair of natural
numbers, then one can apply Cantor’s bijection C : N×N→
N (used in proving the countability of the rationals) to the
result [4].

3Except that primes are sufficiently small in most cases.



V. PARTIAL ORDERS

The ability of Gödel hashes to accelerate testing for sub-
sumption under a partial order, i.e., whether x v y, is
perhaps their greatest strength. Partially ordered sets (posets)
play an important role in fields such as static analysis and
artificial intelligence. In static analysis in particular, subsump-
tion testing in large, complex lattices can easily consume
the bulk of the runtime for an analysis. (For experimental
results in accelerating static analysis with Gödel hashing, see
Section VIII.)

We are able to provide a structurally recursive condition for
when a partially ordered set has an order-perserving Gödel
hash. Specifically, given a poset (S,v), we can formulate
Gödel hash analogs of join (t), meet (u) and subsumption
(v) if the poset S has a prime basis.A poset has a prime basis
if every (non-bottom) element has a unique decomposition as
the least upper bound of a finite number of basis elements.

Definition V.1. For a poset (S,v), the set B ⊆ S is a prime
basis if:

C1 ⊆ B and C2 ⊆ B,

and ⊔
C1 =

⊔
C2,

implies
C1 = C2; and

for any element s 6= ⊥ ∈ S, there exists a set C ⊆ B such
that:

s =
⊔
C.

We will call a partially ordered set that has a prime basis
a factorable poset. A factorable poset doesn’t need to have a
weakest element, but if it does, the weakest element (denoted
⊥) is not in the prime basis. (This is analogous to excluding
one from the set of prime numbers.)

Definition V.2. The function GS : S → N computes the order-
preserving Gödel hash of a partially ordered set (S,v) with
prime basis B under the prime map PB : B → P:

GS (b1 t · · · t bn) = PB(b1)× · · · × PB(bn).

A. Operations on factorable partial orders

As with previous Gödel hashes, common operations and
relations reduce to natural arithmetic.

Lemma V.1. Join reduces to least common multiple:

||s1 t s2|| = ||s1|| lcm ||s2||.

Proof. Factorability allows us to construct “characteristic
functions” on the prime basis of partial orders, where χs :
B → {0, 1}:

χs(b) =

{
1 b v s
0 b 6v s.

Clearly, χs1ts2(b) = max(χs1(b), χs2(b)). Now, the proof is
analogous for union over sets.

Lemma V.2. Meet operation reduces to greatest common
divisor:

||s1 u s2|| = ||s1|| gcd ||s2||.

Proof. By an argument similar to the previous proof.

Lemma V.3. Subsumption reduces to divisibility:

s1 v s2 iff G(s1) | G(s2).

Proof. By an argument analogous to the subset-inclusion test
for Gödel hashes on sets.

b) Warning: Our definition of prime basis does not
ensure that a partially ordered set defines a join (nor a meet)
for any two elements. As a result, there are cases where s1ts2
will not exist, but of course, the reduction to Gödel hashes will
still assign it a number, and there is no way for the Gödel hash
to know that this element does not exist in the partial order.
Thus, the Gödel hash reduction for partial orders is only sound
under join for join-semilattices, and under meet for meet-
semilattices. It is therefore advisable to promote a partial order
to a lattice before working with its Gödel hash encoding to
ensure soundness. (This is not an issue for application domains
such as static analysis.)

B. Recursively constructed factorable posets

We can show that the standard set-construction operators
preserve factorability.

c) Factorable flat orders: A poset (S,v) whose order is
flat is trivially factorable: its prime basis is the set S.

d) Factorable power sets: A partially ordered power set
(P (S),⊆) where the order is inclusion is easily factorable:
its prime basis, BP(S), consists of the singleton sets over S:
BP(S) = {{s} : s ∈ S}

e) Products of factorable posets: The Cartesian product
of factorable partial orders is itself factorable under its product
ordering. Let (A1,v1) and (A2,v2) be factorable posets with
prime bases B1 and B2 respectively. Then the poset (A1 ×
A2,vA1×A2

) is defined so that:

(a1, a2) vA1×A2
(a′1, a

′
2) iff a1 v1 a

′
1 and a2 v2 a

′
2.

The prime basis for the product, BA1×A2 , is the product of
the prime bases: BA1×A2

= B1 ×B2.
f) Disjoint unions of factorable posets: If two posets

(A1,v1) and (A2,v2) have prime bases B1 and B2, then the
prime basis for the natural ordering of the disjoint sum A1+A2

is the disjoint sum of the prime bases: BA1+A2
= B1 +B2.

g) Function spaces into factorable partial orders: The
natural partial ordering of functions leads to a factorable space
of partially ordered functions when the range of the function
space is factorable. That is, if (Y,vY ) has prime basis By ,
then a space of finite functions (X → Y,vX→Y ) is also
factorable under the natural ordering:

f vX→Y g iff for each x ∈ dom(f) : f(x) vY g(x).

The prime basis for this function space, BX→Y , is
the set of functions that map just one element of x



into a prime basis element of the set Y : BX→Y =
{⊥X→Y [x 7→ b] : x ∈ X, b ∈ BY }. where the bottom function
⊥X→Y maps every element to the bottom of Y : ⊥X→Y (x) =
⊥Y . unless the poset Y has no bottom, in which case ⊥X→Y
is the everywhere undefined function: λx.undefined .
Partial function spaces are identical except that the prime basis
elements don’t extend the bottom map:

BX⇀Y = {[x 7→ b] : x ∈ X, b ∈ BY } .

C. Function spaces into countable total orders

While factorability is a sufficient condition for Gödel hash-
ing, there are partial orders which are not factorable, yet
which have an order-preserving Gödel hash. An important
instance of this is a function space that maps into a countable
total order. (In static analysis, such posets are used for must-
alias and environment analysis [18], [16], [19].) If (Y,≤)
is a totally ordered set, then the space of finite, partial
functions X ⇀ Y has the natural partial order (vX⇀Y ):
f vX⇀Y g iff f(x) ≤ g(x) for all x ∈ X .

Because Y is a countable total order, there exists an order-
preserving measure function M : Y → N.

Definition V.3. Given a totally ordered set (Y,≤), the order-
preserving Gödel hash of the function f : X ⇀ Y under
the prime map P : X → P is computed by the function G :
(X ⇀ Y )→ N:

G(f) = ||f || =
∏

x∈dom(f)

P (x)M(f(x)).

Under this definition, we have the usual reductions:

Lemma V.4. Join reduces to least common multiple:

||f t g|| = ||f || lcm ||g||,

Proof. The argument proceeds by constructing a multiset-like
characteristic function χf : X → N:

χf (x) =M(f(x)).

The rest of the argument is analogous to union on multisets.

Lemma V.5. Meet reduces to greatest common divisor:

||f u g|| = ||f || gcd ||g||,

Proof. By an argument similar to the previous proof.

Lemma V.6. Subsumption reduces to divisibility:

f v g iff G(f) | G(g).

Proof. By an argument analogous to that of subset-inclusion
testing for multisets.

0.25 
0.5 

1 
2 
4 
8 

16 
32 
64 

128 

10
00

*0
.00

1 

10
00

*0
.01

 

10
00

*0
.1 

1E
+4*

0.0
01

 

1E
+4*

0.0
1 

1E
+4*

0.1
 

1E
+5*

0.0
01

 

1E
+5*

0.0
1 

1E
+5*

0.1
 

N
or

m
al

iz
ed

 si
ze

 r
el

at
iv

e 
to

 G
od

el
 

H
as

hi
ng

 se
t 

Universe * Density 

HashSet SortedArraySet TreeSet BitSet 

Fig. 1. Normalized size of traditional hash sets, sorted-array sets, sorted-
balanced tree sets and bitmap sets, relative to the size of the predicted
worst case of Gödel hashing sets. The (logarithmic scale) vertical axis is
the normalized size. The horizontal axis is denoted as U ∗ ρ: U is the size
of the universe, ρ is the density of the set as a fraction of the universe. The
worst case of Gödel hash dominates for compactness—by up to tens of times
smaller than that of the common data structures.

VI. COMPUTING PRIMES AND PRIME MAPS

Gödel hashes rely on being able to generate prime maps.
Constructing efficient prime maps requires an efficient method
for generating the ith prime number. In functional program-
ming, a global, lazy, internally memoizing stream of prime
numbers is convenient, particularly when multiple structures
in the program will require their own prime maps. This is
the approach that our implementation use (in the analyzer
implementation in Section VIII). There are pragmatic methods
that use a sieve to generate primes deterministically [21].
However, probabilistic primality tests [25], [20], [22] are more
efficient, arbitrarily reliable and require no storage of prior
primes. The probabilistic tests are particularly fast on word-
sized primes. And, if primes are allocated in an on-demand
fashion, word-sized primes are all that are likely to be needed.

VII. EXPERIMENTAL RESULTS

There are two key questions to answer with experimenta-
tion:
(1) How big do Gödel hashes get?
(2) How fast are operations on Gödel hashes?

The short answer to the question of size is that they are
roughly tens of times less than the size of the structure from
whence they came for relatively sparse data. With respect
to speed, the short answer is that the critical operations of
inclusion and equality are orders of magnitude faster at all
densities.

We’ll focus our efforts on Gödel hashes of sets, since these
form the basis for the other techniques. Let the set U be the
universe and let U = |U| be the size of the universe.

A. Measuring hash size

Figure 1 renders the normalized sizes of the following
standard data structures, relative to that of the predicted worst-
case for Gödel hashes set: (1) the array-backed set; (2) the
tree-backed set; (3) the traditional hash-backed set; and (4)



the bitmap-backed set. The varied parameters are (1) the size
of the universe, U , and (2) the density of the set relative to the
size of the universe, ρ. For instance, with a density of 0.1 and
a universe of 10,000 elements, the set size under consideration
is 0.1× 10, 000 = 1, 000.

Note that we compute the exact array size, without con-
sideration of resizing strategy, which is commonly employed
in most program languages’ standard libraries for better per-
formance (e.g. Java’s ArrayList increases its capacity by a
factor of 1.5). Also, we only compute the elements’ size based
on a very space-efficient bucket-based hashset implementation
(C++’s unordered_set), the bucket array’s size is ignored.

Even so, Gödel hashes are substantially smaller (tens of
times smaller) than all of the other data structures, except the
dense bitmap-backed sets with ρ = 0.1. Note that even though
the bitmap set is very space-efficient for representing dense
data, when it becomes sparse with small ρ, the size of bitmap
set can be up to 78.4 times larger than that of Gödel hashes!

We focus on sparse sets because higher-order program
analysis tends to deal with highly sparse flow sets. For in-
stance, in context-sensitive analysis, bitmap-backed sets could
be exponential in the size of the program, whereas the median
flow set in practice has size two.

B. Measuring speed

In Table I, we measured the slow down ratio of average run
time of each single set operation on sorted tree sets, sorted
array sets, and bitmap sets relative to that of Gödel hashes.
For hashes, fast equality is a critical operation. And, for Gödel
hashes, fast subsumption (subset) is also critical for candidate
applications. Table I shows that the critical hash operations on
Gödel hashes of sets can be up to hundreds of times faster!
Remarkably, the performance of critical operations on bitmap
sets degrades rapidly (by an order of magnitude) when the
sets become sparse (when ρ decreases), even though they can
be relatively more efficient than the other three standard data
structures in dense sets (with ρ = 0.1). The performance
advantage of Gödel hashing sets on sparse sets (in addition
to the size advantage validated in Table 1) fits extremely well
over other data structures in the case of program analysis,
especially for higher-order programs.

h) Implementation details: Gödel hashes are imple-
mented in C++ using GNU GMP (GNU Multiple Precision
Arithmetic library) for big integer arithmetic operations. GMP
is highly optimized on modern CPUs to operate at very long
data types with a single instruction. Instruction sets such as
SSE and AVX can do 256 bits or even 512 bits data arith-
metic operations [12]. Sorted tree set uses C++ std::set
, which is red-black tree based. Sorted array set uses C++
std::vector to store data, and uses std’s binary search
and set algorithms for correspondent set operations. Hash set
uses std::unordered_set that is a bucket-based hash
set. Bit set uses C++ std::bitset, which is implemented
with an array of integers. The evaluation program runs each
operation 1,000 times on sets that contains U ∗ ρ number of
elements. These elements are randomly fetched from the prime

universe U . The evaluation is conducted on a PC with a six-
core Xeon 3.3GHz CPU and 32GB RAM.

VIII. APPLICATION: PUSHDOWN CONTROL FLOW
ANALYSIS FOR OBJECT-ORIENTED PROGRAMS

To further demonstrate the high promise of Gödel hashes,
we adapt a publicly available analyzer that is developed
for DARPA’s Automated Program Analysis for Cybersecurity
(APAC) program. It is an effective semantic-based abstract
interpretation framework to detect maliciousness in Android
applications [15]. However, the analysis still suffers from
the performance bottleneck originating from the subsumption
testing during fixed point computation. This makes it an
excellent candidate to validate the benefits of Gödel hashes
in improving analysis run time.

To make the evaluation more compelling, we evaluate the
Gödel hashing instrumented analyzer on the widely used stan-
dard benchmark suite—DaCapo [1]. It has much larger scale
of code bases to analyze than ordinary mobile applications pre-
sented in Google market. What’s more, the realistic workload
can stress-test analysis with Gödel hashing substantially.

Since the analyzer works directly on Dalvik byte code,
which is compiled from Java programs in Dalvik Virtual Ma-
chine (DVM), we have successfully compiled 10 out of 11 Java
applications in the DaCapo benchmark (v.2006-10.MR2) in
DVM with minor change in the source code (mainly changed
enum to other names because enum is a key word in JRE 1.5
or later). We encapsulate the main method of each benchmark
in the entry point onCreate of a class of type Activity.
These benchmarks are compiled using the built-in tool dx
in Android SDK. Some GUI class references (especially
awt) in Java programs are resolved by including rt.jar
in the Android class path. To avoid name space conflicts in
packages/classes, we use jarjar [13] to repackage some
Java standard libraries that are re-implemented in Android.
The only Java program that is not ported is eclipse,
which involves substantial conflicts in Java GUI class (awt,
swing, swt). We believe the other ten available programs
suffice for our purpose.

Table II presents the runtime speedup for the DaCapo
benchmarks that are compiled in Android DVM. With Gödel
hash domains, the analysis can run tens of times faster than
the one without.

IX. RELATED WORK

There is an intellectual debt in this work to Kurt Gödel [9]
and Georg Cantor [4]. It is arguably true that Cantor’s bijec-
tions were the first perfect hash functions.

Gödel did not actually use most of encodings we describe,
but we feel justified in attributing his name to them, because
it is so similar in spirit to his encodings. Gödel encoded a
sequence of natural numbers 〈n1, . . . , nm〉 by raising the ith
prime (pi) to ni, and then multiplying the results together:
〈n1, . . . , nm〉 ≡ pn1

1 pn2
2 · · · pnm

m . It is straightforward to extend
this line of thinking to sets, multisets and partial orders as we
have done.



TABLE I
SLOW DOWN RATIO OF AVERAGE RUN TIME OF EACH SINGLE SET OPERATION ON SORTED TREE SETS, SORTED ARRAY SETS, HASH SETS AND BITMAP

SETS, RELATIVE TO THAT OF GÖDEL HASHES. For the critical hash operations of equality and subsumption, operations on Gödel hashes of sets are up to
hundreds of times faster.

U density ⊆ = ∪ − ∩ ∈ deletion insertion

5,000

0.001

sorted treeset 2.667 2.333 1.459 1.179 0.56 1 2.667 3.333
sorted arrayset 1.333 1.333 0.324 0.393 0.36 0.75 1 2.333

hashset 4 4.333 1.757 1.607 0.72 1 1.667 2.333
bitset 36.333 35.333 2.216 2.929 3.32 0.25 0.333 0.333

0.01

sorted treeset 17.75 5.667 1.067 0.888 0.372 1.333 3.2 2.25
sorted arrayset 6.625 2.333 0.098 0.105 0.072 0.833 1.6 2.5

hashset 14 5.333 1.318 0.82 0.287 0.667 1.2 1
bitset 13.75 23.333 0.129 0.147 0.149 0.333 0.2 0.25

0.1

sorted treeset 89.147 285.455 0.843 0.789 0.399 1.278 1.962 2
sorted arrayset 40.941 112.818 0.075 0.07 0.049 0.556 1.423 4.32

hashset 31.294 94.182 0.921 0.551 0.201 1.444 0.923 0.72
bitset 3.235 9.727 0.01 0.011 0.011 0.111 0.038 0.08

10,000

0.001

sorted treeset 4.8 9 1.165 1.056 0.395 1.25 3.667 2.333
sorted arrayset 1.8 3.5 0.165 0.222 0.158 0.75 1.333 2

hashset 4 11 1.66 1.25 0.421 0.75 2 1.167
bitset 49.4 117.5 1.641 2.319 2.197 0.5 0.667 0.333

0.01

sorted treeset 36.8 84.25 0.952 0.797 0.349 1 2.571 3
sorted arrayset 12 26.5 0.081 0.084 0.059 0.636 1.714 4.5

hashset 22.2 55.5 1.168 0.645 0.235 0.273 0.857 1.333
bitset 24.6 59 0.129 0.141 0.141 0.182 0.286 0.5

0.1

sorted treeset 111.882 392.737 0.696 0.626 0.313 2.345 1.352 1.605
sorted arrayset 58.853 205.737 0.052 0.048 0.034 0.448 1.759 5.698

hashset 39.235 134.895 0.624 0.39 0.144 0.586 0.407 0.767
bitset 3.559 12.105 0.007 0.007 0.007 0.069 0.037 0.047

50,000

0.001

sorted treeset 17.875 40 0.829 0.668 0.262 1 3 3.4
sorted arrayset 6.5 14.667 0.077 0.08 0.051 0.714 1.6 4

hashset 14 37.333 1.048 0.586 0.201 0.429 1.2 1.6
bitset 247.875 599.333 1.691 1.739 1.663 0.571 1 1.2

0.01

sorted treeset 76.244 259.333 0.62 0.576 0.241 1.091 1.455 1.769
sorted arrayset 35.463 104.667 0.05 0.048 0.032 0.409 0.939 4.038

hashset 27.342 91.917 0.699 0.391 0.14 0.227 0.333 0.5
bitset 48.342 150.667 0.113 0.118 0.115 0.227 0.152 0.154

0.1

sorted treeset 158.884 596.427 0.32 0.339 0.201 0.888 0.369 0.589
sorted arrayset 58.382 219.281 0.018 0.018 0.012 0.231 1.65 6.386

hashset 52.693 197.812 0.254 0.238 0.131 0.806 0.136 0.35
bitset 5.565 19.104 0.004 0.004 0.004 0.037 0.016 0.03

100,000

0.001

sorted treeset 29.462 68.6 0.747 0.62 0.281 0.917 2.25 2.429
sorted arrayset 8.769 20.2 0.062 0.065 0.045 0.583 1.5 3.857

hashset 17 44 0.877 0.501 0.183 0.333 0.875 1.286
bitset 338.077 1,001 1.795 1.868 1.865 0.5 1.125 1.143

0.01

sorted treeset 96.747 341.455 0.483 0.464 0.189 1.457 1.045 1.059
sorted arrayset 51.279 179.318 0.035 0.033 0.022 0.314 1.358 3.353

hashset 35.57 123.909 0.494 0.28 0.1 0.286 0.254 0.324
bitset 54.392 179.136 0.093 0.098 0.098 0.2 0.119 0.118

0.1

sorted treeset 141.405 414.681 0.224 0.24 0.146 0.471 0.193 0.246
sorted arrayset 51.9 152.039 0.012 0.013 0.008 0.143 1.54 4.825

hashset 68.372 199.84 0.204 0.203 0.116 0.611 0.081 0.173
bitset 5.403 14.858 0.003 0.004 0.004 0.027 0.012 0.015



TABLE II
ANALYSIS RUNTIME SPEEDUP WITH GÖDEL HASHES IN DACAPO

BENCHMARKS

benchmark name lines speed-up
antlr 35,000 22.2x
bloat 70,344 5.9x
chart 217,788 14.2x
fop 184,316 11.7x
hsqldb 155,591 18.7x
luindex 38,221 33.4x
lusearch 87,00 30.1x
pmd 55,000 17x
xalan 259,026 14.7x

Gödel also devised a β-function encoding for sequences. An
advantage of the β-function encoding, which uses the Chinese
remainder theorem, is that it does not require factoring or
knowledge of primes in order to retrieve the ith element of
a sequence. We touched upon the β-function technique, but
we reserve a fuller exploration of its own unique advantages
for future work.

The largest body of related work lies in the field of hashing
functions. More specifically, this work fits within a subset of
a subset of a subset of a subset of the field: dynamic, order-
preserving, perfect hash functions on complex data structures.
Perfect hash functions are discussed in [10] and [14]. Previous
work in [2], [3], [5], [6], [8], [7], [11], [26] all examine perfect
hashing, but only [5] and [8] preserve order, and then, they
preserve only a total order. Neither of these techniques is
dynamic; that is, they require foreknowledge of the keywords
to be hashed. According to our survey of the literature, we
believe Gödel hashes to be the only member of their class.

X. CONCLUSION

Motivated by the flow analysis performance bottleneck
caused by set related relational operations, we proposed Gödel
hashes as a speedup technique in flow analysis. Inspired by
Kurt Gödel’s proofs of incompleteness, Gödel hashes arise
from the fundamental theorem of arithmetic’s guarantee of
the uniqueness of integer factorization. Remarkably, prime
factorization ends up being able to suitably capture important
properties for sets, maps, relations, graphs and partial orders.
Gödel hashes bring a unique confluence of properties to
hashing: Gödel hashes are perfect and order-preserving yet
still dynamic, structural and incremental; Gödel hashes are
not minimal, but they are compact. In practice, Gödel hashes
substantially improve performance for the critical operations
of inclusion and equality. In real world benchmark experiment,
Gödel hashes based static flow analysis has demonstrated tens
of times speedups.

The source code, implementation, benchmarks and Gödel-
hashing library used in this paper are available from: http://www.
cs.utah.edu/∼liangsy/godelhash-src.html.
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