
Environment Unrolling

Steven Lyde and Matthew Might

University of Utah

Abstract. We propose a new way of thinking about abstract interpre-
tation with a method we term environment unrolling. Model checkers for
imperative languages will often apply loop unrolling to make their state
space finite in the presence of loops and recursion. We propose handling
environments in a similar fashion by putting a bound on the number of
environments to which a given closure can transitively refer. We present
how this idea relates to a normal model of abstract interpretation, give a
general overview of its soundness proof in regards to a concrete seman-
tics, and show empirical results demonstrating the effectiveness of our
approach.

1 Introduction

In general the state space of an abstract machine for a λ-calculus is infinite
because environments refer to closures and closures refer to environments [4].
In Abstracting Abstract Machines(AAM), a systematic recipe for breaking this
cycle is given [5]. Bindings are store allocated and the number of addresses in
the store is made finite.

We propose a slightly different perspective on how to make the state space
finite. Model checkers for imperative language wills often apply loop unrolling to
make their state space finite in the presence of loops and recursion. We propose
handling environments in a fashion similar to how they handle loops, by putting
a bound on the number of environments to which a given closure can transitively
refer. As will be demonstrated, this provides a benefit in both speed and precision
in an abstract interpretation.

To illustrate the basic idea, we provide a simple example using the following
program.

(define (fact n)
(if (zero? n) 1 (∗ n (fact (− n 1)))))

(fact 5)

In a traditional 0CFA, after the second recursive call, the environment would
have the binding [n 7→ a], while the store would have the binding [a 7→ {4, 5}].
However, if we were to use a concrete environment, the environment would con-
tain the binding [n 7→ 4] and the store would be empty.

2 Concrete Semantics

The setting for our analysis is the A-normal form λ-calculus.

e ∈ Exp ::= (let ((v call)) e) | call | æ
call ∈ Call ::= (f æ)

f,æ ∈ Atom ::= v | lam
lam ∈ Lam ::= (λ (v) e)

v ∈ Var is a set of identifiers

A CESK style machine for this language has the following state space [2].

c ∈ Conf = Exp× Env × Store ×Kont

ρ ∈ Env = Var ⇀ Addr

σ ∈ Store = Addr → Clo

clo ∈ Clo = Lam× Clo

κ ∈ Kont = Frame∗
φ ∈ Frame = Var × Exp× Env

a ∈ Addr is an infinite set of addresses

To define the semantics we need the following three items.

1. We need a function I : Exp → Conf to inject our program into an initial
configuration.

c0 = I(e) = (e, [], [], 〈〉)
2. We need a function A : Atom × Env × Store ⇀ Clo to evaluate atomic

exrpessions.

A(lam, ρ, σ) = (lam, ρ) A(v, ρ, σ) = σ(ρ(v))

3. And we need a transition relation (⇒) ⊆ Conf × Conf .

c︷ ︸︸ ︷
(J(f æ)K, ρ, σ, κ)⇒ (e, ρ′′, σ′, κ), where

(J(λ (v) e)K, ρ′) = A(f, ρ, σ)

a = alloc(v, c)

ρ′′ = ρ′[v 7→ a]

σ′ = σ[a 7→ A(æ, ρ, σ)]

(J(let ((v call)) e)K, ρ, σ, κ)⇒ (call , ρ, σ, (v, e, ρ) : κ)

c︷ ︸︸ ︷
(æ, ρ, σ, (v, e, ρ′) : κ)⇒ (e, ρ′′, σ′, κ), where

a = alloc(v, c)

ρ′′ = ρ′[v 7→ a]

σ′ = σ[a 7→ A(æ, ρ, σ)]

3 Abstract Semantics

We abstract the configuration space, but leave the continuation infinite by using
a pushdown control-flow analysis [6].

ĉ ∈ Ĉonf = Exp× Ênv × Ŝtore × K̂ont

ρ̂ ∈ Ênv = Ênvx + Ênv0

σ̂ ∈ Ŝtore = Âddr → P(Ĉlo)

ĉlo ∈ Ĉlo = Lam× Ĉlo

κ̂ ∈ K̂ont = F̂rame∗

φ̂ ∈ F̂rame = Var × Exp× Ênv

â ∈ Âddr is a finite set of addresses

However, we have abstracted environments in a non-standard way. There are
now two types of environments. The first type of environment has a depth which
represents how many times we can extend the environment before using store
allocation in the traditional fashion. We also have the classical environment,
which maps variables to a set of addresses.

Ênvx = Var ⇀ Ĉloy, x > y

Ĉlox = Lam× Ênvx

Ênv0 = Var ⇀ Âddr

Our semantics will require a way to extract the depth from the environment.

D̂(ρ̂) =

{
x ρ̂ ∈ Ênvx

0 ρ̂ ∈ Ênv0

We also overload the function D̂ over sets. When given a set, it returns the
minimum depth of all environments contained in the set. This will also work
over closures, where the environment is extracted from the closure.

D̂(Ê) = min(
{
d : d = D̂(ρ̂), ρ̂ ∈ Ê

}
)

We need to inject a program into an initial configuration. When this is done,
the limit on the amount of unrolling d is chosen.

ĉ0 = I(e) = (e, ρ̂, [], 〈〉), where ρ̂ = [] ∈ Ênvd

The atomic evaluator is also slightly different than usual. It must take into
account the depth of the environment. Lambda terms are handled in the tra-
ditional way. If we have a variable, we have to be cognizant of what type of
environment we have. If we have an Ênv0, we evaluate in the standard way. If

we have the other type of environment Ênvx, we look up the single value but
put it in a set to avoid redefining the abstract transition relation.

Â(lam, ρ̂, σ̂) = (lam, ρ̂)

Â(v, ρ̂, σ̂) =

{
σ̂(ρ̂(v)) ρ̂ ∈ Ênv0

{ρ̂(v)} ρ̂ ∈ Ênvx

The transition relation is also slightly different. Function calls and atomic
expressions call an auxiliary function to extend the environment and update the
store.

(J(f æ)K, ρ̂, σ̂, κ̂) (e, ρ̂′′, σ̂′, κ̂), where

(J(λ (v) e)K, ρ̂′) ∈ Â(f, ρ̂, σ̂)

(ρ̂′′, σ̂′) = êxtend(ρ̂′, σ̂, v,æ)

(J(let ((v call)) e)K, ρ̂, σ̂, κ̂) (call , ρ̂, σ̂, (v, e, ρ̂) : κ̂)

(æ, ρ̂, σ̂, (v, e, ρ̂′) : κ̂) (e, ρ̂′′, σ̂′, κ̂), where

(ρ̂′′, σ̂′) = êxtend(ρ̂′, σ̂, v,æ)

The êxtend function must take into account the depth of the current envi-
ronment and what the depth will be after it is extended. If the environment is
at depth zero, it is updated in the standard way using the store.

êxtend(

ĉ︷ ︸︸ ︷
e, ρ̂, σ̂, κ̂, v,æ) = (ρ̂′, σ̂′) if D̂(ρ̂) = 0, where

â = âlloc(v, ĉ)

ρ̂′ = ρ̂[v 7→ â]

σ̂′ = σ̂ t [â 7→ Â(æ, ρ̂, σ̂)]

We must also be able to distinguish if extending the environment will drop
the depth to zero. If that is the case, we need to allocate addresses for all the
values in the environment and put them in the store.

êxtend(

ĉ︷ ︸︸ ︷
e, ρ̂, σ̂, κ̂, v,æ) = (ρ̂′, σ̂) if cond , where

cond = D̂(ρ̂) > 0 and D̂(Â(æ, ρ̂, σ̂)) ≤ 1

(ρ̂′, σ̂′) = êxtend(âllocρ(ĉ), v,æ)

In the final case were we are still dealing with environments of depth greater
than zero and the environment from the argument has depth greater than one, we

do not need to allocate any addresses, but can simply update the environment.

êxtend(

ĉ︷ ︸︸ ︷
e, ρ̂, σ̂, κ̂, v,æ) = (ρ̂′, σ̂) if cond , where

cond = D̂(ρ̂) > 0 and D̂(Â(æ, ρ̂, σ̂)) > 1

ĉlo ∈ Â(æ, ρ̂, σ̂)

ρ̂′′ = ρ̂′[v 7→ ĉlo]

As seen above, we need a function that can convert a state that has an
environment of non-zero depth into an environment that is at depth zero.

âllocρ(

ĉ︷ ︸︸ ︷
e, ρ̂, σ̂, κ̂) = (e, ρ̂′, σ̂′, κ̂), where

vi ∈ dom(ρ̂)

âi = âlloc(vi, ĉ)

ρ̂′ = [][vi 7→ âi]

σ̂′ = σ̂ t [âi 7→ ρ̂(vi)]

3.1 Soundness

To prove the soundness we must show that the abstract semantics simulate the
concrete semantics following the standard proof found in [3]. The key insight
for the proof is that we can provide an abstraction map that allocates a unique
abstract address for every value in a non-zero depth environment.

4 Evaluation

We have implemented this analysis and show the results on the exact benchmarks
presented in [1] in Figure 1. Note that when the depth is zero we get the same
results as a traditional pushdown analysis. When using a depth of one, we see
that precision is equal to or more precise than when k = 1, while at the same
time generating a smaller abstract transition graph. With further increases in
the depth, we see better precision and smaller transition graphs than even occurs
with abstract garbage collection. The run times of the new analyses correlate
to how many states and edges are in the graph. Environment unrolling gives
improvements in both precision and speed.

5 Conclusion

We have shown a unique approach to abstract interpretation. We have described
how our approach is similar to loop unrolling and given a general overview of its
semantics. We have also provided results from an implementation of the analysis,
which demonstrate its possible benefits.

Program Exp Var k PDCFA PDCFA+GC d PDCFA+UE

mj09 19 10

0 38 38 4 33 32 4 0 38 38 4
1 44 48 1 32 31 1 1 39 40 4

2 40 40 3
3 38 37 3
4 32 31 3

eta 21 13
0 32 32 6 30 29 8 0 32 32 6
1 30 29 8 30 29 8 1 32 32 8

2 29 29 10

kcfa2 20 10
0 36 35 4 35 34 4 0 36 35 4
1 87 144 2 35 34 2 1 76 114 3

2 29 30 3

kcfa3 25 13
0 50 51 5 53 52 5 0 50 51 5
1 1761 4046 2 53 52 2 1 489 905 3

2 53 52 3

blur 40 20
0 523 813 3 299 335 9 0 523 813 3
1 324 348 9 320 344 9 1 49 49 12

2 47 48 13

loop2 41 16
0 108 117 4 67 71 4 0 108 117 4
1 398 512 3 145 156 3 1 74 77 5

sat 51 23

0 545 773 4 254 317 4 0 545 773 4
1 10872 14797 4 71 73 10 1 1400 1825 7

2 7625 9769 7
3 71 73 13

Fig. 1. Benchmark results. The first three columns provide the name of the benchmark,
the number of expressions and variables in the program. The next seven columns show
the results for running the original analysis with k ∈ {0, 1} and with garbage collection
off and on. Under each analysis, the first column is the number of control states and
the second column is the number of edges computed during the analysis. The third
column is the number of singleton variables. The last four columns show the results of
our analysis. It gives the depth d selected and the number of control states, edges and
singleton variables. The depth is not shown for larger values if the precision was not
increased.

While the presentation only demonstrated the abstract interpretation for
ANF lambda calculus, it can immediately be applied to other language forms,
including those involving mutation. In the case of mutation, we would need to
always store allocate mutable variables.

This material is based on research sponsored by DARPA under the programs
Automated Program Analysis for Cybersecurity (FA8750-12-2-0106) and Clean-
Slate Resilient Hosts (CRASH) as well as by NSF under the program Faculty
Early Career Development (CAREER-1350344).

References

1. Earl, C., Sergey, I., Might, M., Van Horn, D.: Introspective pushdown analysis of
higher-order programs. In: Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming (ICFP 2012). pp. 177–188. ICFP ’12, ACM,
New York, NY, USA (2012)

2. Felleisen, M., Friedman, D.P.: A calculus for assignments in higher-order languages.
In: POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages. pp. 314+. ACM, New York, NY, USA (1987)

3. Might, M.: Environment Analysis of Higher-Order Languages. Ph.D. thesis, Georgia
Institute of Technology (Jun 2007)

4. Shivers, O.G.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1991)

5. Van Horn, D., Might, M.: Abstracting abstract machines. In: ICFP ’10: Proceedings
of the 15th ACM SIGPLAN International Conference on Functional Programming.
pp. 51–62. ICFP ’10, ACM Press (Sep 2010)

6. Vardoulakis, D., Shivers, O.: CFA2: A Context-Free approach to Control-Flow anal-
ysis. In: Gordon, A.D. (ed.) Programming Languages and Systems, Lecture Notes
in Computer Science, vol. 6012, chap. 30, pp. 570–589. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

