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Goal
Design features and compilation story to support this abstraction.

Oh...
Transducer ≡ Coroutine ≡ Process
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A computational analogy

The world of functions
I Agents are functions.
I Functions are stateless.
I Composed with ◦ operator: h = f ◦ g.

The world of online transducers
I Agents are input/compute/output processes.
I Processes have local, bounded state.
I Composed with Unix | operator: h = g | f .

Input Output

Compute

Input Output

Compute



Online transducers

I DSP networks
Convolve / integrate / filter / difference / . . .

I Network-protocol stacks (“micro-protocols”, layer integration)
packet-assembly / checksum / order / http-parse / html-lex / . . .

I Graphics processing
viewpoint-transform / clip1 / . . . / clip6 / z-divide / light / scan

I Stream processing
I Unix pipelines

...
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Optimisation across composition

Functional paradigm
f ◦ g optimised by β-reduction:

f = λy . y + 3

g = λz . z + 5

◦ = λm n . λx .m(n x) (“Plumbing” made explicit in λ rep.)

f ◦ g = (λmn.λx .m(nx))(λy .y + 3)(λz.z + 5)

= λx .(λy .y + 3)((λz.z + 5)x)

= λx .(λy .y + 3)(x + 5)

= λx .(x + 5) + 3

= λx .x + (5 + 3)

= λx .x + 8
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Transducer paradigm
No good optimisation story.

Optimisation across composition is
key technology supporting abstraction:
Enables construction by composition.

If only. . .
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Optimisation across composition

Transducer paradigm
No good optimisation story.

Optimisation across composition is
key technology supporting abstraction:
Enables construction by composition.

If only. . .

Thread #1 Thread #3Thread #3Thread #2Thread #2Thread #1
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Strategy

I Build transducers from continuations.
I Build continuations from λ.
I Handle λ well.
I Watch what happens.



Tool: Continuation-passing style (CPS)

Restricted subset of λ calculus: Function calls do not return.

Thus cannot write f(g(x)).

Must pass extra argument—the continuation—to each call,
to represent rest of computation:

(- a (* b c)) ⇒ (* b c (λ (temp) (- a temp halt)))



Tool: Continuation-passing style (CPS)

Restricted subset of λ calculus: Function calls do not return.

Thus cannot write f(g(x)).

Must pass extra argument—the continuation—to each call,
to represent rest of computation:

(- a (* b c)) ⇒ (* b c (λ (temp) (- a temp halt)))

CPS is the “assembler” of functional languages.
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CPS Payoff

CPS is universal representation of control & env.

Construct encoding
fun call call to λ
fun return call to λ
iteration call to λ
sequencing call to λ
conditional call to λ
exception call to λ
continuation call to λ
coroutine switch call to λ

...
...
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Writing transducers with put and get

(define (send-fives)
(put 5)
(send-fives))

(define (doubler)
(put (* 2 (get)))
(doubler))

(define (integ sum)
(let ((next-sum (+ sum (get))))

(put next-sum)
(integ next-sum)))
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Tool: 3CPS & transducer pipelines

f x k u d

ExpCont: rest
of this stage’s
computation

UpCont: rest
of upstream
computation

DownCont: rest
of downstream
computation

Semantic domains / Types

x ∈ Value

k ∈ ExpCont = Value→ UpCont→ DownCont→ Ans

u ∈ UpCont = DownCont→ Ans

d ∈ DownCont = Value→ UpCont→ Ans

c ∈ CmdCont = UpCont→ DownCont→ Ans (a transducer)
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Composing transducers in 3CPS

C1

Input Output

Compute

C2

Input Output

Compute

U D

C

compose/pull c1 c2 = λ u d . c2 (λ d ′ . c1 u d ′) d

Semantic domains / Types

x ∈ Value

k ∈ ExpCont = Value→ UpCont→ DownCont→ Ans

u ∈ UpCont = DownCont→ Ans

d ∈ DownCont = Value→ UpCont→ Ans

c ∈ CmdCont = UpCont→ DownCont→ Ans
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Transducer data/control flow in 3CPS

get x k u d = u (λ x u′ . k x u′ d)

put x k u d = d x (λ d ′ . k unit u d)

compose/pull c1 c2 = λ u d . c2 (λ d ′ . c1 u d ′) d

All the “plumbing” made explicit
in three short equations.



A toy example

(λ () ; Put-5
(letrec ((lp1 (λ () (put 5) (lp1))))

(lp1)))

(λ () ; Doubler
(letrec ((lp2 (λ ()

(put (* 2 (get)))
(lp2))))

(lp2)))



After CPS conversion

(λ (k1 u1 d1) ; Put-5
(letrec ((lp1 (λ (k1a u1a d1a)

(d1a 5 (λ (d1b) (lp1 k1a u1a d1b))))))
(lp1 k1 u1 d1)))

(λ (k2 u2 d2) ; Doubler
(letrec ((lp2 (λ (k2a u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 k2a u2b d2b))))))))

(lp2 k2 u2 d2)))



(compose/pull put-5 doubler)

((λ (c1 c2) ; Compose/pull
(λ (k u d) (c2 k (λ (d’) (c1 k u d’)) d)))
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(d1a 5 (λ (d1b) (lp1 k1a u1a d1b))))))
(lp1 k1 u1 d1)))

(λ (k2 u2 d2) ; Doubler
(letrec ((lp2 (λ (k2a u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 k2a u2b d2b))))))))

(lp2 k2 u2 d2))))



(compose/pull put-5 doubler)
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(λ (k u d) (c2 k (λ (d’) (c1 k u d’)) d)))

(λ (k1 u1 d1) ; Put-5
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(lp2 k2 u2 d2))))

Eliminate useless variables (1991)



(compose/pull put-5 doubler)
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(λ (k u d) (c2 (λ (d’) (c1 d’)) d)))

(λ (d1) ; Put-5
(letrec ((lp1 (λ (d1a)

(d1a 5 (λ (d1b) (lp1 d1b))))))
(lp1 d1)))

(λ (u2 d2) ; Doubler
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
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(compose/pull put-5 doubler)

((λ (c1 c2) ; Compose/pull
(λ (k u d) (c2 (λ (d’) (c1 d’)) d)))

(λ (d1) ; Put-5
(letrec ((lp1 (λ (d1a)

(d1a 5 (λ (d1b) (lp1 d1b))))))
(lp1 d1)))

(λ (u2 d2) ; Doubler
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b d2b))))))))

(lp2 u2 d2))))

η-reduce (1935)



(compose/pull put-5 doubler)

((λ (c1 c2) ; Compose/pull
(λ (k u d) (c2 c1 d)))

(λ (d1) ; Put-5
(letrec ((lp1 (λ (d1a)

(d1a 5 lp1))))
(lp1 d1)))

(λ (u2 d2) ; Doubler
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b d2b))))))))
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(compose/pull put-5 doubler)

((λ (c1 c2) ; Compose/pull
(λ (k u d) (c2 c1 d)))

(λ (d1) ; Put-5
(letrec ((lp1 (λ (d1a)

(d1a 5 lp1))))
(lp1 d1)))

(λ (u2 d2) ; Doubler
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b d2b))))))))

(lp2 u2 d2))))

β-reduce whole thing (1935)



(compose/pull put-5 doubler)

(λ (k u d)
((λ (u2 d2) ; Doubler

(letrec ((lp2 (λ (u2a d2a)
(u2a (λ (x u2b)

(d2a (* 2 x)
(λ (d2b)
(lp2 u2b d2b))))))))

(lp2 u2 d2)))
(λ (d1) ; Put-5

(letrec ((lp1 (λ (d1a) (d1a 5 lp1))))
(lp1 d1)))

d))



(compose/pull put-5 doubler)

(λ (k u d)
((λ (u2 d2) ; Doubler

(letrec ((lp2 (λ (u2a d2a)
(u2a (λ (x u2b)

(d2a (* 2 x)
(λ (d2b)
(lp2 u2b d2b))))))))

(lp2 u2 d2)))
(λ (d1) ; Put-5

(letrec ((lp1 (λ (d1a) (d1a 5 lp1))))
(lp1 d1)))

d))

β again (1935)



(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b d2b))))))))

(lp2 (λ (d1) ; Put-5
(letrec ((lp1 (λ (d1a) (d1a 5 lp1))))
(lp1 d1)))

d)))



(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (u2a d2a)

(u2a (λ (x u2b)
(d2a (* 2 x)

(λ (d2b)
(lp2 u2b d2b))))))))

(lp2 (λ (d1) ; Put-5
(letrec ((lp1 (λ (d1a) (d1a 5 lp1))))
(lp1 d1)))

d)))

Hoist inner letrec. (1980’s)
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η-reduce (1935)
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(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (u2a d2a)
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(λ (d2b)
(lp2 u2b d2b)))))))
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d)))

Super-β: u2a = u2b = lp1 (2006)
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Eliminate useless u2a, u2b.



(compose/pull put-5 doubler)
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(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (d2a)

(lp1 (λ (x)
(d2a (* 2 x)

(λ (d2b)
(lp2 d2b)))))))

(lp1 (λ (d1a) (d1a 5))))
(lp2 d)))

η-reduce. (1935)



(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (d2a)
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(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (d2a)

(lp1 (λ (x)
(d2a (* 2 x) lp2)))))

(lp1 (λ (d1a) (d1a 5))))
(lp2 d)))

Inline & β-reduce lp1 application. (1935)



(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (d2a)

((λ (d1a) (d1a 5))
(λ (x) (d2a (* 2 x) lp2))))))

(lp2 d)))



(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (d2a)

((λ (d1a) (d1a 5))
(λ (x) (d2a (* 2 x) lp2))))))

(lp2 d)))

Two more β steps. (1935)



(compose/pull put-5 doubler)

(λ (k u d)
(letrec ((lp2 (λ (d2a)

(d2a (* 2 5) lp2))))
(lp2 d)))

Liftoff!
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Issues

I Linear “pipeline” topology wired in. Can we generalise?
I Can it be typed?
I OK, it works “by hand.” Can it be implemented?

Yes.



Channels in CPS

Explicit channels permit non-linear control/data-flow
topologies.

Same optimisation story applies as in 3CPS case.



Types for functional coroutines

(α, β) Channel /* coroutine connection: send an α, get a β. */

switch : α× (α, β) Channel→ β × (α, β) Channel

datatype (α,β) Channel =
Chan of (α * (β,α) Channel) cont;

fun switch(x, Chan k) =
callcc (fn k’ => throw k (x, Chan k’));

Details are in the paper.
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Composing non-iterative computations

Some producers are truly recursive:

(define (gen-fringe tree chan)
(if (leaf? tree)

(put (leaf:val tree) chan)
(let ((chan (gen-fringe (tree:left tree) chan)))

(gen-fringe (tree:right tree) chan))))

What if we compose with summing consumer?

Prototype compiler produces recursive, tree-walk summation.



Experience

I Built prototype compiler for toy dialect of Scheme.
I Direct-style front end
I Includes call/cc
I Standard optimisations (β, η, . . . )
I Plus ∆CFA (POPL 2006), abstract GC, abstract counting (ΓCFA,

ICFP 2006)

I Used for testing out Ph.D. analyses/optimisations
Nothing transducer/coroutine specific—just a machine for
attacking CPS.

I Successfully fuses put5/doubler, integrators,
(rendered with coroutines/channels)

I Limiting reagent: Super-β.



Related work

Transducer fusion

I Deforestation
I Haskell’s fold/build, unfold/destroy, etc..
I Clu loop generators
I APL
I Filter fusion / Integrated layer processing
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Final thoughts

I It’s all about the representation.
I λ as essential control/env/data-structure
I CPS ⇒ Our main concern

becomes our only concern.

Once in CPS, generic optimisations suffice.
This generalises to exotic control structures.

I Coroutines are the neglected control structure.
I Coroutines don’t have to be heavyweight.

(λ, CPS & static analysis are answer to efficiency issues.)
I Lots to do! (Stay tuned)

I Full-blown SML compiler
I TCP/IP (Foxnet)
I DSP libs.



Thank you.


