Continuations and Transducer Composition

Olin Shivers Matthew Might

Georgia Tech

PLDI 2006

The Big Idea

Observation

Some programs easier to write with transducer abstraction.

Goal

Design features and compilation story to support this abstraction.

The Big Idea

Observation

Some programs easier to write with transducer abstraction.

Goal

Design features and compilation story to support this abstraction.

Oh...

 $Transducer \equiv Coroutine \equiv Process$

A computational analogy

The world of functions

- Agents are functions.
- Functions are stateless.
- Composed with \circ operator: $h = f \circ g$.

A computational analogy

The world of functions

- Agents are functions.
- Functions are stateless.
- Composed with \circ operator: $h = f \circ g$.

The world of online transducers

- Agents are input/compute/output processes.
- Processes have local, bounded state.
- Composed with Unix | operator: h = g | f.

Online transducers

DSP networks

Convolve / integrate / filter / difference / ...

- Network-protocol stacks ("micro-protocols", layer integration) packet-assembly / checksum / order / http-parse / html-lex / ...
- Graphics processing viewpoint-transform / clip1 / ... / clip6 / z-divide / light / scan
- Stream processing
- Unix pipelines
 - ÷

Functional paradigm

 $f \circ g$ optimised by β -reduction:

$$f = \lambda y \cdot y + 3$$
$$g = \lambda z \cdot z + 5$$

Functional paradigm

 $f \circ g$ optimised by β -reduction:

 $f = \lambda y \cdot y + 3$ $g = \lambda z \cdot z + 5$ $\circ = \lambda m n \cdot \lambda x \cdot m(nx)$ ("Plumbing" made explicit in λ rep.)

Functional paradigm

 $f \circ g$ optimised by β -reduction:

 $f = \lambda y \cdot y + 3$ $g = \lambda z \cdot z + 5$ $\circ = \lambda m n \cdot \lambda x \cdot m(nx)$ ("Plumbing" made explicit in λ rep.)

 $f \circ g = (\lambda mn.\lambda x.m(nx))(\lambda y.y + 3)(\lambda z.z + 5)$

Functional paradigm

 $f \circ g$ optimised by β -reduction:

$$f = \lambda y \cdot y + 3$$

$$g = \lambda z \cdot z + 5$$

$$\circ = \lambda m n \cdot \lambda x \cdot m(nx)$$
 ("Plumbing" made explicit in λ rep.)

$$f \circ g = (\lambda mn.\lambda x.m(nx))(\lambda y.y + 3)(\lambda z.z + 5)$$

= $\lambda x.(\lambda y.y + 3)((\lambda z.z + 5)x)$
= $\lambda x.(\lambda y.y + 3)(x + 5)$
= $\lambda x.(x + 5) + 3$
= $\lambda x.x + (5 + 3)$
= $\lambda x.x + 8$

Transducer paradigm

No good optimisation story.

Optimisation across composition is key technology supporting abstraction: Enables construction by composition.

Transducer paradigm

No good optimisation story.

Optimisation across composition is key technology supporting abstraction: Enables construction by composition.

Transducer paradigm

No good optimisation story.

Optimisation across composition is key technology supporting abstraction: Enables construction by composition.

Transducer paradigm

No good optimisation story.

Optimisation across composition is key technology supporting abstraction: Enables construction by composition.

Transducer paradigm

No good optimisation story.

Optimisation across composition is key technology supporting abstraction: Enables construction by composition.

Transducer paradigm

No good optimisation story.

Optimisation across composition is key technology supporting abstraction: Enables construction by composition.

Build transducers from continuations.

Strategy

- Build transducers from continuations.
- Build continuations from λ .

Strategy

- Build transducers from continuations.
- Build continuations from λ .
- Handle λ well.

Strategy

- Build transducers from continuations.
- Build continuations from λ .
- Handle λ well.
- Watch what happens.

Tool: Continuation-passing style (CPS)

Restricted subset of λ calculus: Function calls do not return.

Thus cannot write f(g(x)).

Must pass extra argument—the *continuation*—to each call, to represent rest of computation:

 $(-a (*b c)) \Rightarrow (*b c (\lambda (temp) (-a temp halt)))$

Tool: Continuation-passing style (CPS)

Restricted subset of λ calculus: Function calls do not return.

Thus cannot write f(g(x)).

Must pass extra argument—the *continuation*—to each call, to represent rest of computation:

 $(-a (*b c)) \Rightarrow (*b c (\lambda (temp) (-a temp halt)))$

CPS is the "assembler" of functional languages.

Construct	encoding
fun call	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ
conditional	call to λ

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ
conditional	call to λ
exception	call to λ

-

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ
conditional	call to λ
exception	call to λ
continuation	call to λ

-

CPS is universal representation of control & env.

Construct	encoding
fun call	call to λ
fun return	call to λ
iteration	call to λ
sequencing	call to λ
conditional	call to λ
exception	call to λ
continuation	call to λ
coroutine switch	call to λ

: :

Writing transducers with put and get

```
(define (send-fives)
 (put 5)
 (send-fives))
```

Writing transducers with put and get

```
(define (send-fives)
 (put 5)
 (send-fives))
```

```
(define (doubler)
 (put (* 2 (get)))
 (doubler))
```

Writing transducers with put and get

```
(define (send-fives)
 (put 5)
 (send-fives))
(define (doubler)
 (put (* 2 (get)))
 (doubler))
(define (integ sum)
  (let ((next-sum (+ sum (get))))
    (put next-sum)
    (integ next-sum)))
```

Tool: 3CPS & transducer pipelines

fxkud

Tool: 3CPS & transducer pipelines

Semantic domains / Types

 $x \in Value$ $k \in ExpCont = Value \rightarrow UpCont \rightarrow DownCont \rightarrow Ans$

(a transducer)

Tool: 3CPS & transducer pipelines

Semantic domains / Types

 $x \in Value$

- $k \in \mathsf{ExpCont} = \mathsf{Value} \rightarrow \mathsf{UpCont} \rightarrow \mathsf{DownCont} \rightarrow \mathsf{Ans}$
- $u \in UpCont$ = DownCont \rightarrow Ans

(a transducer)
Tool: 3CPS & transducer pipelines

Semantic domains / Types

 $x \in Value$

 $k \in ExpCont$ = Value \rightarrow UpCont \rightarrow DownCont \rightarrow Ans

 $u \in UpCont$ = DownCont \rightarrow Ans

 $d \in \mathsf{DownCont} = \mathsf{Value} \to \mathsf{UpCont} \to \mathsf{Ans}$

 $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$ (a transducer)

Get & put in 3CPS

get x k u d = put x k u d =

Semantic domains / Types

- $x \in Value$
- $k \in \mathsf{ExpCont} = \mathsf{Value} \rightarrow \mathsf{UpCont} \rightarrow \mathsf{DownCont} \rightarrow \mathsf{Ans}$
- $u \in UpCont$ = DownCont \rightarrow Ans

 $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$

 $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$

Get & put in 3CPS

- $x \in Value$
- $k \in \mathsf{ExpCont} = \mathsf{Value} \rightarrow \mathsf{UpCont} \rightarrow \mathsf{DownCont} \rightarrow \mathsf{Ans}$
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$

Get & put in 3CPS

$$get x k u d = u (\lambda x' u' .)$$

$$put x k u d =$$

- $x \in Value$
- $k \in \mathsf{ExpCont} = \mathsf{Value}
 ightarrow \mathsf{UpCont}
 ightarrow \mathsf{DownCont}
 ightarrow \mathsf{Ans}$
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $\textit{c} \in \textit{CmdCont} \ = \textit{UpCont} \rightarrow \textit{DownCont} \rightarrow \textit{Ans}$

Get & put in 3CPS

$$get x k u d = u (\lambda x' u' . k)$$

$$put x k u d =$$

- $x \in Value$
- $k \in ExpCont$ = Value \rightarrow UpCont \rightarrow DownCont \rightarrow Ans
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $\textit{c} \in \textit{CmdCont} \ = \textit{UpCont} \rightarrow \textit{DownCont} \rightarrow \textit{Ans}$

Get & put in 3CPS

$$get x k u d = u (\lambda x' u' \cdot k x')$$

put x k u d =

- $x \in Value$
- $k \in ExpCont$ = Value \rightarrow UpCont \rightarrow DownCont \rightarrow Ans
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$

Get & put in 3CPS

$$get x k u d = u (\lambda x' u' . k x' u' d)$$

put x k u d =

- $x \in Value$
- $k \in ExpCont$ = Value \rightarrow UpCont \rightarrow DownCont \rightarrow Ans
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$

Get & put in 3CPS

$$get x k u d = u (\lambda x' u' \cdot k x' u' d)$$

put x k u d = d

- $x \in Value$
- $k \in \mathsf{ExpCont} = \mathsf{Value} \rightarrow \mathsf{UpCont} \rightarrow \mathsf{DownCont} \rightarrow \mathsf{Ans}$
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $\textit{c} \in \textit{CmdCont} \ = \textit{UpCont} \rightarrow \textit{DownCont} \rightarrow \textit{Ans}$

Get & put in 3CPS

$$get x k u d = u (\lambda x' u' . k x' u' d)$$

put x k u d = d x (

Semantic domains / Types

 $x \in Value$

 $k \in ExpCont$ = Value \rightarrow UpCont \rightarrow DownCont \rightarrow Ans

 $u \in \mathsf{UpCont}$ = DownCont \rightarrow Ans

 $d \in \mathsf{DownCont} = \mathsf{Value} \to \mathsf{UpCont} \to \mathsf{Ans}$

 $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$

Get & put in 3CPS

get x k u d = u (
$$\lambda$$
 x' u' . k x' u' d)
put x k u d = d x (λ d' .

- $x \in Value$
- $k \in \mathsf{ExpCont} = \mathsf{Value} \rightarrow \mathsf{UpCont} \rightarrow \mathsf{DownCont} \rightarrow \mathsf{Ans}$
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$

Get & put in 3CPS

$$get x k u d = u (\lambda x' u' . k x' u' d)$$

$$put x k u d = d x (\lambda d' . k unit)$$

- $x \in Value$
- $k \in ExpCont$ = Value \rightarrow UpCont \rightarrow DownCont \rightarrow Ans
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$

Get & put in 3CPS

$$get x k u d = u (\lambda x' u' . k x' u' d)$$

$$put x k u d = d x (\lambda d' . k unit u d')$$

- $x \in Value$
- $k \in ExpCont$ = Value \rightarrow UpCont \rightarrow DownCont \rightarrow Ans
- $u \in UpCont$ = DownCont \rightarrow Ans
- $d \in \text{DownCont} = \text{Value} \rightarrow \text{UpCont} \rightarrow \text{Ans}$
- $c \in CmdCont = UpCont \rightarrow DownCont \rightarrow Ans$

 $compose/pull c_1 c_2$

Semantic domains / Types

compose/pull $c_1 c_2 = \lambda u d$.

Semantic domains / Types

 $compose/pull c_1 c_2 = \lambda u d . c_2$

Semantic domains / Types

 $compose/pull c_1 c_2 = \lambda u d \cdot c_2 (\lambda d' \cdot) d$

Semantic domains / Types

 $compose/pull c_1 c_2 = \lambda u d \cdot c_2 (\lambda d' \cdot c_1) d$

Semantic domains / Types

 $compose/pull c_1 c_2 = \lambda u d \cdot c_2 (\lambda d' \cdot c_1 u) d$

Semantic domains / Types

 $compose/pull c_1 c_2 = \lambda u d \cdot c_2 (\lambda d' \cdot c_1 u d') d$

Semantic domains / Types

Transducer data/control flow in 3CPS

$$get x k u d = u (\lambda x u' . k x u' d)$$

$$put x k u d = d x (\lambda d' . k unit u d)$$

$$compose/pull c_1 c_2 = \lambda u d . c_2 (\lambda d' . c_1 u d') d$$

Transducer data/control flow in 3CPS

$$get x k u d = u (\lambda x u' . k x u' d)$$

$$put x k u d = d x (\lambda d' . k unit u d)$$

$$compose/pull c_1 c_2 = \lambda u d . c_2 (\lambda d' . c_1 u d') d$$

All the "plumbing" made explicit in three short equations.

A toy example

```
(λ () ; Put-5
  (letrec ((lp1 (λ () (put 5) (lp1))))
        (lp1)))
```

After CPS conversion

```
(\lambda (k1 u1 d1)
                                  : Put-5
  (letrec ((lp1 (\lambda (k1a u1a d1a)
                      (d1a 5 (\lambda (d1b) (lp1 k1a u1a d1b)))))
    (lp1 k1 u1 d1)))
(\lambda (k2 u2 d2)
                                  ; Doubler
  (letrec ((lp2 (\lambda (k2a u2a d2a)
                      (u2a (\lambda (x u2b)
                              (d2a (* 2 x)
                                    (\lambda (d2b))
                                       (lp2 k2a u2b d2b))))))))
    (lp2 k2 u2 d2)))
```

```
(\lambda (c1 c2))
                                    ; Compose/pull
   (\lambda (k u d) (c2 k (\lambda (d') (c1 k u d')) d)))
 (\lambda (k1 u1 d1))
                                 : Put-5
   (letrec ((lp1 (\lambda (k1a u1a d1a)
                        (d1a 5 (\lambda (d1b) (lp1 k1a u1a d1b))))))
      (lp1 k1 u1 d1)))
 (\lambda (k2 u2 d2))
                                    ; Doubler
   (letrec ((lp2 (\lambda (k2a u2a d2a)
                        (u2a (\lambda (x u2b)))
                                (d2a (* 2 x))
                                       (\lambda (d2b))
                                         (lp2 k2a u2b d2b))))))))
      (lp2 k2 u2 d2))))
```

```
(\lambda (c1 c2))
                                               ; Compose/pull
    (\lambda (\mathbf{k} \mathbf{u} \mathbf{d}) (\mathbf{c} \mathbf{2} \mathbf{k} (\lambda (\mathbf{d'}) (\mathbf{c} \mathbf{1} \mathbf{k} \mathbf{u} \mathbf{d'})) \mathbf{d})))
 (\lambda (k1 u1 d1))
                                           : Put-5
    (letrec ((lp1 (\lambda (k1a u1a d1a)
                               (d1a 5 (\lambda (d1b) (lp1 k1a u1a d1b))))))
        (lp1 k1 u1 d1)))
 (\lambda (k2 u2 d2))
                                               ; Doubler
    (letrec ((lp2 (\lambda (k2a u2a d2a)
                               (u2a (\lambda (x u2b)))
                                           (d2a (* 2 x))
                                                   (\lambda (d2b))
                                                      (lp2 k2a u2b d2b))))))))
        (lp2 k2 u2 d2))))
```

Eliminate useless variables (1991)

```
((\lambda (c1 c2))
                                      ; Compose/pull
   (\lambda (k u d) (c2 (\lambda (d') (c1 d')) d)))
 (\lambda (d1))
                              : Put-5
   (letrec ((lp1 (\lambda (d1a)
                         (d1a 5 (\lambda (d1b) (lp1 d1b)))))
      (lp1 d1)))
 (\lambda (u2 d2))
                                  ; Doubler
   (letrec ((lp2 (\lambda (u2a d2a)
                         (u2a (\lambda (x u2b)))
                                  (d2a (* 2 x))
                                        (\lambda (d2b))
                                           (lp2 u2b d2b))))))))
      (lp2 u2 d2)))
```

```
((\lambda (c1 c2))
                                     ; Compose/pull
   (\lambda (k u d) (c2 (\lambda (d') (c1 d')) d)))
 (\lambda (d1))
                              : Put-5
   (letrec ((lp1 (\lambda (d1a)
                        (d1a 5 (\lambda (d1b) (lp1 d1b)))))
      (lp1 d1)))
 (\lambda (u2 d2))
                                  ; Doubler
   (letrec ((lp2 (\lambda (u2a d2a)
                         (u2a (\lambda (x u2b)))
                                  (d2a (* 2 x))
                                        (\lambda (d2b))
                                           (lp2 u2b d2b))))))))
      (lp2 u2 d2)))
```

 η -reduce (1935)

```
((\lambda (c1 c2))
                                     ; Compose/pull
   (\lambda (k u d) (c2 c1 d)))
 (\lambda (d1))
                              : Put-5
   (letrec ((lp1 (\lambda (d1a)
                        (d1a 5 lp1))))
      (lp1 d1)))
 (\lambda (u2 d2))
                                  ; Doubler
   (letrec ((lp2 (\lambda (u2a d2a)
                        (u2a (\lambda (x u2b)))
                                  (d2a (* 2 x))
                                        (\lambda (d2b))
                                           (lp2 u2b d2b))))))))
      (lp2 u2 d2)))
```

```
((\lambda (c1 c2))
                                      ; Compose/pull
   (\lambda (k u d) (c2 c1 d)))
 (\lambda (d1))
                              : Put-5
   (letrec ((lp1 (\lambda (d1a)
                        (d1a 5 lp1))))
      (lp1 d1)))
 (\lambda (u2 d2))
                                  ; Doubler
   (letrec ((lp2 (\lambda (u2a d2a)
                         (u2a (\lambda (x u2b)))
                                  (d2a (* 2 x))
                                        (\lambda (d2b))
                                           (lp2 u2b d2b))))))))
      (lp2 u2 d2))))
```

 β -reduce whole thing (1935)

```
(\lambda (k u d))
  (\lambda (u2 d2))
                                    ; Doubler
      (letrec ((lp2 (\lambda (u2a d2a)
                           (u2a (\lambda (x u2b)
                                    (d2a (* 2 x)
                                          (\lambda (d2b))
                                             (lp2 u2b d2b)))))))
         (lp2 u2 d2)))
   (\lambda (d1))
                                : Put-5
      (letrec ((lp1 (\lambda (d1a) (d1a 5 lp1))))
        (lp1 d1)))
   d))
```

```
(\lambda (k u d))
  (\lambda (u2 d2))
                                    ; Doubler
      (letrec ((lp2 (\lambda (u2a d2a)
                           (u2a (\lambda (x u2b)
                                    (d2a (* 2 x)
                                          (\lambda (d2b))
                                             (lp2 u2b d2b)))))))
         (lp2 u2 d2)))
   (\lambda (d1))
                                : Put-5
      (letrec ((lp1 (\lambda (d1a) (d1a 5 lp1))))
        (lp1 d1)))
   d))
```

β again (1935)

```
 \begin{array}{c} (\lambda \ (k \ u \ d) \\ (1etrec \ ((1p2 \ (\lambda \ (u2a \ d2a) \\ (u2a \ (\lambda \ (x \ u2b) \\ (d2a \ (* \ 2 \ x) \\ (\lambda \ (d2b) \\ (1p2 \ u2b \ d2b))))))) \\ (1p2 \ (\lambda \ (d1) \qquad ; \ Put-5 \\ (1etrec \ ((1p1 \ (\lambda \ (d1a) \ (d1a \ 5 \ 1p1)))) \\ (1p1 \ d1))) \\ d))) \end{array}
```

```
 \begin{array}{c} (\lambda \ (k \ u \ d) \\ (1etrec \ ((1p2 \ (\lambda \ (u2a \ d2a) \\ (u2a \ (\lambda \ (x \ u2b) \\ (d2a \ (* \ 2 \ x) \\ (\lambda \ (d2b) \\ (1p2 \ u2b \ d2b))))))) \\ (1p2 \ (\lambda \ (d1) \qquad ; \ Put-5 \\ (1etrec \ ((1p1 \ (\lambda \ (d1a) \ (d1a \ 5 \ 1p1)))) \\ (1p1 \ d1))) \\ d)) ) \end{array}
```

Hoist inner letrec. (1980's)

```
 \begin{array}{c} (\lambda \ (\texttt{k u d}) \\ (\texttt{letrec ((lp2 (\lambda (u2a d2a) \\ (u2a (\lambda (x u2b) \\ (d2a (* 2 x) \\ (\lambda (d2b) \\ (lp2 u2b d2b)))))) \\ (lp1 (\lambda (d1a) (d1a 5 lp1)))) \\ (lp2 (\lambda (d1) (lp1 d1)) \\ d))) \end{array}
```

```
 \begin{array}{c} (\lambda \ (k \ u \ d) \\ (letrec \ ((lp2 \ (\lambda \ (u2a \ d2a) \\ (u2a \ (\lambda \ (x \ u2b) \\ (d2a \ (* \ 2 \ x) \\ (\lambda \ (d2b) \\ (lp2 \ u2b \ d2b)))))) \\ (lp1 \ (\lambda \ (d1a) \ (d1a \ 5 \ lp1)))) \\ (lp2 \ (\lambda \ (d1) \ (lp1 \ d1)) \\ d))) \end{array}
```

 η -reduce (1935)

```
 \begin{array}{c} (\lambda \ (\text{k u d}) \\ (\text{letrec ((lp2 ($\lambda$ (u2a d2a)) \\ (u2a ($\lambda$ (x u2b) \\ (d2a ($* 2 x) \\ ($\lambda$ (d2b) \\ (lp2 u2b d2b)))))) \\ (lp1 ($\lambda$ (d1a) (d1a 5 lp1)))) \\ (lp2 lp1 \\ d))) \end{array}
```
```
\begin{array}{c} (\lambda \ (\texttt{k u d}) \\ (\texttt{letrec ((lp2 ($\lambda$ (u2a d2a)) \\ (u2a ($\lambda$ (x u2b) \\ (d2a ($* 2 x)) \\ ($\lambda$ (d2b) \\ (lp2 u2b d2b)))))) \\ (lp1 ($\lambda$ (d1a) (d1a 5 lp1)))) \\ (lp2 lp1 \\ d))) \end{array}
```

Super- β : u2a = u2b = 1p1 (2006)

```
\begin{array}{c} (\lambda \ (\text{k u d}) \\ (\texttt{letrec ((lp2 ($\lambda$ (u2a d2a) $ (lp1 ($\lambda$ (x u2b) $ (d2a (* 2 x) $ (\lambda$ (d2b) $ (lp2 lp1 d2b)))))) $ (lp1 ($\lambda$ (d1a) (d1a 5 lp1)))) $ (lp2 lp1 d))) \end{array}
```

```
 \begin{array}{c} (\lambda \ (\texttt{k u d}) \\ (\texttt{letrec ((lp2 (\lambda (u2a d2a) \\ (lp1 (\lambda (x u2b) \\ (d2a (* 2 x) \\ (\lambda (d2b) \\ (lp2 lp1 d2b))))))) \\ (lp1 (\lambda (d1a) (d1a 5 lp1)))) \\ (lp2 lp1 d))) \end{array}
```

Eliminate useless u2a, u2b.

```
\begin{array}{c} (\lambda \ (\texttt{k u d}) \\ (\texttt{letrec ((lp2 ($\lambda$ (d2a) $ (lp1 ($\lambda$ ($x) $ (d2a (* 2 x) $ ($\lambda$ (d2b) $ (lp2 d2b)))))) $ (lp1 ($\lambda$ (d1a) (d1a 5)))) $ (lp2 d))) \end{array}
```

```
 \begin{array}{c} (\lambda \ (\texttt{k u d}) \\ (\texttt{letrec ((lp2 (\lambda (d2a) \\ (lp1 (\lambda (x) \\ (d2a (* 2 x) \\ (\lambda (d2b) \\ (lp2 d2b)))))) \\ (lp1 (\lambda (d1a) (d1a 5)))) \\ (lp2 d))) \end{array}
```

 η -reduce. (1935)

```
\begin{array}{c} (\lambda \ (\texttt{k u d}) \\ (\texttt{letrec ((lp2 ($\lambda$ (d2a) $ (lp1 ($\lambda$ (x) $ (d2a (* 2 x) lp2))))) $ (lp1 ($\lambda$ (d1a) (d1a 5)))) $ (lp2 d))) $ \end{array}
```

```
\begin{array}{c} (\lambda \ (\texttt{k u d}) \\ (\texttt{letrec ((lp2 ($\lambda$ (d2a) $ (lp1 ($\lambda$ (x) $ (d2a (* 2 x) lp2))))) $ (lp1 ($\lambda$ (d1a) (d1a 5)))) $ (lp2 d))) $ \end{array}
```

Inline & β -reduce 1p1 application. (1935)

```
 \begin{array}{c} (\lambda \ (k \ u \ d) \\ (letrec \ ((lp2 \ (\lambda \ (d2a) \\ \ ((\lambda \ (d1a) \ (d1a \ 5)) \\ \ (\lambda \ (x) \ (d2a \ (* \ 2 \ x) \ lp2)))))) \\ (lp2 \ d)) \end{array}
```

```
 \begin{array}{c} (\lambda \ (k \ u \ d) \\ (letrec \ ((lp2 \ (\lambda \ (d2a) \\ \ ((\lambda \ (d1a) \ (d1a \ 5)) \\ \ (\lambda \ (x) \ (d2a \ (* \ 2 \ x) \ lp2)))))) \\ (lp2 \ d)) \end{array}
```

Two more β steps. (1935)

```
\begin{array}{c} (\lambda \ (\texttt{k u d}) \\ (\texttt{letrec ((lp2 ($\lambda$ (d2a)) \\ (d2a (* 2 5) lp2)))) \\ (lp2 d))) \end{array}
```

Liftoff!

- Linear "pipeline" topology wired in. Can we generalise?
- Can it be typed?
- OK, it works "by hand." Can it be implemented?

- Linear "pipeline" topology wired in. Can we generalise?
- Can it be typed?
- OK, it works "by hand." Can it be implemented?

Yes.

- Explicit channels permit non-linear control/data-flow topologies.
- Same optimisation story applies as in 3CPS case.

Types for functional coroutines

 (α, β) Channel /* coroutine connection: send an α , get a β . */

switch : $\alpha \times (\alpha, \beta)$ Channel $\rightarrow \beta \times (\alpha, \beta)$ Channel

```
datatype (\alpha, \beta) Channel =
Chan of (\alpha * (\beta, \alpha) Channel) cont;
```

```
fun switch(x, Chan k) =
    callcc (fn k' => throw k (x, Chan k'));
```

Details are in the paper.

Composing non-iterative computations

Some producers are truly recursive:

```
(define (gen-fringe tree chan)
 (if (leaf? tree)
      (put (leaf:val tree) chan)
      (let ((chan (gen-fringe (tree:left tree) chan)))
        (gen-fringe (tree:right tree) chan))))
```

What if we compose with summing consumer?

Composing non-iterative computations

Some producers are truly recursive:

```
(define (gen-fringe tree chan)
 (if (leaf? tree)
      (put (leaf:val tree) chan)
      (let ((chan (gen-fringe (tree:left tree) chan)))
        (gen-fringe (tree:right tree) chan))))
```

What if we compose with summing consumer?

Prototype compiler produces recursive, tree-walk summation.

Experience

Built prototype compiler for toy dialect of Scheme.

- Direct-style front end
- Includes call/cc
- Standard optimisations (β , η , ...)
- ► Plus △CFA (POPL 2006), abstract GC, abstract counting (FCFA, ICFP 2006)
- Used for testing out Ph.D. analyses/optimisations Nothing transducer/coroutine specific—just a machine for attacking CPS.
- Successfully fuses put5/doubler, integrators, (rendered with coroutines/channels)
- Limiting reagent: Super-β.

Related work

Transducer fusion

- Deforestation
- Haskell's fold/build, unfold/destroy, etc..
- Clu loop generators
- APL
- Filter fusion / Integrated layer processing

- It's all about the representation.
 - > λ as essential control/env/data-structure
 - ► CPS ⇒ Our main concern becomes our only concern.

Once in CPS, generic optimisations suffice.

- It's all about the representation.
 - λ as essential control/env/data-structure
 - ► CPS ⇒ Our main concern becomes our only concern.

Once in CPS, generic optimisations suffice. This generalises to exotic control structures.

- It's all about the representation.
 - λ as essential control/env/data-structure
 - ► CPS ⇒ Our main concern becomes our only concern.

Once in CPS, generic optimisations suffice. This generalises to exotic control structures.

Coroutines are the neglected control structure.

- It's all about the representation.
 - λ as essential control/env/data-structure
 - ► CPS ⇒ Our main concern becomes our only concern.

Once in CPS, generic optimisations suffice. This generalises to exotic control structures.

- Coroutines are the neglected control structure.
- Coroutines don't have to be heavyweight.
 (λ, CPS & static analysis are answer to efficiency issues.)

- It's all about the representation.
 - λ as essential control/env/data-structure
 - ► CPS ⇒ Our main concern becomes our only concern.

Once in CPS, generic optimisations suffice. This generalises to exotic control structures.

- Coroutines are the neglected control structure.
- Coroutines don't have to be heavyweight.
 (λ, CPS & static analysis are answer to efficiency issues.)
- Lots to do! (Stay tuned)
 - Full-blown SML compiler
 - TCP/IP (Foxnet)
 - DSP libs.

Thank you.